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Abstract. We suggest that the pseudo-rapidity cut dependence of diffractive deep-inelastic scattering
events at HERA may provide a sensitive test of models of diffraction. A comparison with the experi-
mental cross section shows that the Donnachie-Landshoff model and a simple two-gluon exchange model
of the pomeron model are disfavoured. However a model with a direct coupling of the pomeron to quarks
is viable for a harder quark–pomeron form factor, as is a model based on the leading-twist operator con-
tribution. We also consider a direct-coupling scalar pomeron model. We comment on the implications of
these results for the determination of the partonic structure of the pomeron.

1 Introduction

Pomeron exchange is familiar as a description of total
hadron-hadron cross sections that rise slowly with increas-
ing energy [1]. It should also play a major role in the
diffractive events that have been observed in electron-
proton deep-inelastic scattering (DIS) at HERA, where
the diffractive system may be isolated by requiring that
it be separated from the proton direction by a large gap
in pseudo-rapidity [2,3]. Large pseudo-rapidity gaps imply
the exchange of a colourless state between the proton and
the virtual photon, and the leading contribution to these
events is often interpreted as due to pomeron exchange [1].
These pseudo-rapidity gap events can be viewed as the
proton emitting a pomeron which then undergoes deep-
inelastic scattering. Ingelman and Schlein [4] suggested
treating the pomeron as an hadronic particle. In this pic-
ture, one may consider diffractive DIS to be a probe of
the partonic structure of the pomeron. This is a resolved-
coupling scheme, as the high-energy photon sees the con-
stituent partons in the pomeron. That is, the quarks and
gluons to which the pomeron couples are considered to
be constituents of the pomeron, and hence are necessar-
ily close to mass shell. The basic diagram which illus-
trates this scheme is shown in Fig. 1, where one may
imagine that the photon is probing the quark structure of
the pomeron. Higher-order processes include gluon brems-
strahlung, as shown in Fig. 2a, and boson-gluon fusion, as
shown in Fig. 2b, in which the photon interacts with the
gluonic structure of the pomeron. The resolved-coupling
interpretation does not include direct couplings between
the pomeron and off-shell partons.

In this hadronic picture of the pomeron, one can fac-
torize the diffractive scattering cross section into a sum
over the product of the probability to find a parton with

IP

Fig. 1. Diffractive DIS via pomeron exchange

momentum fraction β in the pomeron and the cross sec-
tion for parton-photon hard scattering. In analogy with
standard DIS, one can define a diffractive structure func-
tion for these processes in terms of the diffractive cross
section,

d3σdiff

dβ dQ2 dxIP
=

2πα2

βQ4 [(1 + (1 − y)2)FD(3)
2 (β, Q2, xIP )

−y2FL(β, Q2, xIP )], (1)

where for y ∼< 0.4 the longitudinal term can be neglected
[5]. According to this picture for leading pomeron ex-
change, the diffractive structure function can be written
in terms of a pomeron structure function, F IP

2 (β, Q2),

F
D(3)
2 (β, Q2, xIP ) = f IP (xIP ) F IP

2 (β, Q2). (2)

Here f IP describes the pomeron flux in the proton, β plays
the role of the Bjorken x variable in DIS, and F IP is inter-
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Fig. 2a,b. Higher-order QCD cor-
rections to diffractive scattering via
pomeron exchange, due to a gluon
bremsstrahlung and b boson-gluon fu-
sion diagrams

preted as the structure function of the pomeron. Exper-
imental results from HERA are consistent with this fac-
torization for a wide range of parameters [6]. Factorization
breaking can be interpreted as being due to sub-leading
Reggeon (ρ, ω . . . ) exchanges [8].

One consequence of a strong pseudo-rapidity cut selec-
tion [7] is that it tends to force the parton far off-shell, in-
troducing a further possible source of factorization break-
ing into the diffractive structure function. This is because
the experimentally extracted diffractive structure function
is obtained by integrating the differential cross section
over the kinematically accessible phase space. As shown
in Appendix A.1, the lower limit θcms

min of the angular in-
tegral is a sensitive function of the kinematic parameters
Q2, β and xIP . Therefore, as we discuss in Sect. 5, a fur-
ther, unfactorizable, xIP -dependence is introduced into the
diffractive structure function through the lower limit of
the phase-space integral. As a result, one would not ex-
pect a diffractive structure function selected by making
a large pseudo-rapidity cut, requiring large virtuality, to
be factorizable into a pomeron flux factor and an xIP -
independent pomeron “structure function”, even though
the full structure function (integrated over the whole phase
space) may be factorizable.

As discussed in [7], events with a strong pseudo-ra-
pidity cut offer a way of discriminating between mod-
els with direct and resolved couplings. Here we sharpen
the previous analysis of the kinematical constraints im-
plied by pseudo-rapidity gap cuts, and discuss how they
may offer a sensitive discriminator between various mod-
els proposed to describe deep-inelastic diffractive scat-
tering. We present a comparison with experiment of the
pseudo-rapidity dependence for five models. The first is
the Donnachie-Landshoff (D-L) model [9], which employs
a vector-like direct coupling of the Pomeron to quarks,
assuming a soft form factor. The second is a modification
of this scheme suggested by two of the authors (E-R) [7],
which invokes a harder form factor. The third model as-
sumes a scalar direct coupling to quarks [10]. The fourth
model uses two-gluon exchange to model the Pomeron [11],
and the final model assumes that the pseudo-rapidity gap
events can be described by the operator-product expan-
sion (OPE), with dominance by the leading-twist oper-
ator. Finally we discuss the implications of our analysis
for the prospects of probing the parton structure of the
Pomeron.

In Sect. 2 we describe the kinematics of diffractive
deep-inelastic electron-proton scattering. Following this,
in Sect. 3 we discuss the parton virtuality constraints im-
plied by strong pseudo-rapidity cuts, the derivations of

which are given in Appendices A.1 and A.2. In Sect. 4 we
discuss our selection of the various models that have been
proposed to describe diffractive deep-inelastic scattering.
In Sect. 5 we compare the predictions of these models
for the pseudo-rapidity gap dependence with experiment.
Finally, we look at the consequences of large virtuality
constraints for previous analyses and suggest in Sect. 6
further experimental investigations to test the ideas pre-
sented here. A summary and conclusions are presented in
Sect. 7.

2 Kinematics
of diffractive deep-inelastic scattering

In the HERA electron-proton experiments, 820 GeV pro-
tons collide with 27.5 GeV electrons or positrons. This cor-
responds to a centre-of-mass (CMS) energy

√
s ∼ 300 GeV,

and allows access to a wider range of Q2 and Bjorken x
than has previously been possible. In the HERA lab frame,
the positive z axis is defined to be in the forward proton
direction and the origin is at the interaction vertex. We
consider diffractive deep-inelastic e − P scattering,

e(pe) + P (P ) → e(p′
e) + P (P ′) + X(X), (3)

where the momenta of the particles are shown in brackets.
The hadronic system X is assumed to be separated from
the forward proton direction by a large pseudo-rapidity
gap. We assume that the proton (or low-mass excited
state) escapes undetected down the beam-pipe or is de-
tected far downstream [6]. The contribution from proton
dissociation is limited by acceptance cuts: if MY is the
mass of the proton remnant, then for H1 MY ∼< 1.6 GeV,
and for ZEUS MY ∼< 4 GeV. One may consider that the
interaction proceeds by virtual photon–pomeron deep-in-
elastic scattering,

γ∗(q) + IP (PIP ) → X(X), (4)

where PIP = P − P ′.
We use the usual kinematic variables of deep-inelastic

scattering:

Q2 = −q2, x =
Q2

2P · q
, and y =

Q2

x s
, (5)

where Q2 is the negative 4-momentum squared of the vir-
tual photon and x is the Bjorken scaling variable. We also
define W 2, the mass squared of the total hadronic system
(X + outgoing proton), by

W 2 = (P + q)2. (6)

Additionally, for diffractive scattering we define
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Table 1. Constraints on the virtuality of the struck quark from the pseudo-rapidity cuts
used in early ZEUS experiments [3]. In this Table, k2

min old corresponds to the results pub-
lished in [7], and k2

min are the revised virtuality constraints with small corrections due
principally to the elimination of the small-angle approximation used in [7]

Q2 β xIP −k2
min GeV2 −k2

min GeV2 −k2
min old GeV2 −k2

min old GeV2

GeV2 (ηmax = 1.5) (ηmax = 2.5) (ηmax = 1.5) (ηmax = 2.5)

10 0.175 .0032 2.5 0.39 3.1 0.4
.0050 5.1 0.89 7.5 1.0

0.375 .0020 0.7 0.11 0.9 0.12
.0032 1.5 0.27 2.3 0.3

0.65 .0013 0.2 0.03 0.2 0.03
.0020 0.3 0.06 0.5 0.07

28 0.175 .0050 6.2 0.95 7.5 1.0
.0079 13.3 2.26 18.7 2.5

0.375 .0020 0.8 0.12 0.9 0.1
.0079 7.4 1.51 14.2 1.9

0.65 .0020 0.4 0.06 0.5 0.07
.0050 1.7 0.33 3.2 0.4

63 0.375 .0050 4.5 0.71 5.7 0.8
.0079 9.4 1.66 14.2 1.9

0.65 .0032 1.0 0.16 1.3 0.2
.0079 4.1 0.83 8.0 1.1

tIP = (P − P ′)2, xIP =
(P − P ′) · q

P · q
≈ Q2 + M2

X

Q2 + W 2 ,

and β =
Q2

2(P − P ′) · q
≈ Q2

Q2 + M2
X

, (7)

where tIP is the momentum transfer at the proton ver-
tex and is constrained by experimental cuts to be small
(|tIP | ∼< 1 GeV2), xIP is the fraction of longitudinal mo-
mentum of the proton carried by the pomeron,1 and x =
βxIP . The mass squared of the diffractive system X is M2

X ,
and the proton mass is neglected in this analysis. In the
lowest-order diagram shown in Fig. 1, β is interpreted
as the fraction of the pomeron momentum carried by the
struck quark, whereas in the three-jet diagrams of Fig. 2, β
is the fraction of pomeron momentum in the exchanged
parton which couples to the pomeron.

The pseudo-rapidity η of an outgoing particle is defined
in the laboratory frame in terms of its polar angle with
respect to the proton direction:

η = − ln tan
(

θlab

2

)
. (8)

In the Ingelman-Schlein picture [4], diffractive DIS corre-
sponds to probing the partonic structure of the pomeron.
For example, the leading contribution to diffractive scat-
tering is the dijet diagram of Fig. 1, in which the high-
energy photon sees the quark content of the pomeron.
Higher-order processes include the gluon bremsstrahlung
of Fig. 2a and the boson-gluon fusion of Fig. 2b, in which

1 To a good approximation for very small tIP , the pomeron
is emitted in the forward proton direction

the photon interacts with the gluonic structure of the
pomeron.

For the process of Fig. 1, we introduce a further invari-
ant, the four-momentum squared of the struck quark, k2.
In the γ∗−IP CMS system, the virtuality of this quark can
be expressed in terms of other invariants, and the polar
angle with respect to the γ∗ IP axis, by

k2 = −Q2 + M2
X

2
(1 − cos θcms). (9)

A similar expression can be formed for interactions, such
as those of Fig. 2, where more than two final-state partons
are produced.

3 Virtuality constraints
from experimental cuts

In a typical measurement with a pseudo-rapidity cut, diff-
ractive events are selected by requiring there to be no ac-
tivity observed above a low-energy threshold (400 MeV)
in a large pseudo-rapidity interval about the forward pro-
ton direction. Thus only events with pseudo-rapidity less
than some cut, ηmax, are accepted. On the other hand, for
an hadronic interpretation of the pomeron, we would re-
quire the quarks coupling to the pomeron to be near mass
shell (|k2| ∼< Λ2

QCD). It has been observed that the strong
pseudo-rapidity cuts imposed in early H1 and ZEUS anal-
yses [2,3] restricted the phase space available for diffrac-
tive scattering, and selected only events in which the struck
quark of Fig. 1 was forced to be far off mass shell for a wide
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Table 2. Virtuality constraints for diffractive scattering as a
function of Q2, β, and xIP for the parameter range measured
in [12]. The constraints correspond to the pseudo-rapidity cut
of ηexp

max = 1.8 which was used for data selection. Also shown
is k2

max, which is the maximum possible virtuality of the ex-
changed quark

Q2GeV2 β xIP −k2
minGeV2 −k2

maxGeV2 θcms
min

8.5 0.065 0.00365 2.3 130 15
0.00649 6.7 130 26

12 0.065 0.00649 6.9 180 22
0.01154 19 180 37
0.02052 44 180 59
0.03648 82 180 84

0.175 0.00429 2.5 69 22
0.00762 6.4 69 36
0.01355 14 69 54
0.02410 26 69 75

0.375 0.00356 1.1 32 22
0.00632 2.7 32 34
0.01125 5.5 32 49

0.65 0.00649 1.2 18 29
25 0.065 0.01154 21 390 27

0.02052 55 390 44
0.03648 120 390 68
0.06488 200 390 93

0.175 0.00429 2.7 140 16
0.00762 7.4 140 26
0.01355 18 140 42
0.02410 38 140 62
0.04285 62 140 83

0.375 0.00356 1.3 67 16
0.00632 3.3 67 26
0.01125 7.5 67 39
0.02000 14 67 55

0.65 0.00649 1.5 38 23
0.01154 3.1 38 33

50 0.175 0.00762 8.2 290 20
0.01355 22 290 32
0.02410 51 290 50
0.04285 95 290 71
0.07620 140 290 90

0.375 0.00356 1.4 130 12
0.00632 3.8 130 19
0.01125 9.4 130 31
0.02000 20 130 46
0.03556 35 130 62

0.65 0.00649 1.9 77 18
0.01154 4.2 77 27
0.02052 7.9 77 37

region of parameter space [7]. This means that the selec-
tion cuts rejected all events corresponding to the process
of Fig. 1 for a wide range of parameters.

To demonstrate this, note that a cut in pseudo-rapidity
corresponds to a lower bound on θcms, which translates
to a lower bound, k2

min, on the struck quark virtuality.
As was shown previously [7], for strong pseudo-rapidity
cuts ηmax, and for a wide range of β, Q2 and xIP , the
struck quark in the diagram of Fig. 1 is forced to be far
off shell, i.e., −k2

min > 1 GeV2.2 The result is a relation be-
tween ηmax and k2

min in terms of the laboratory energies
of the electron and proton and the kinematic variables
defined in the previous section. The details of this calcu-
lation are given in Appendix A.1. Apart from correcting a
small error, the main difference between the new and old
calculations [7] is due to the elimination of a small-angle
approximation made in the original analysis.

The virtuality constraints following from the pseudo-
rapidity cuts used in early ZEUS analyses are given in
Table 1, following [7]. Tabulated diffractive structure func-
tion data for a pseudo-rapidity cut of ηmax = 1.8 and
much stronger virtuality constraints appear in [12]. The
kinematic parameters of these data and the correspond-
ing virtuality constraints, k2

min, are shown in Table 2. This
clearly demonstrates that, in a resolved-coupling picture,
events due to the process of Fig. 1 do not contribute to
large pseudo-rapidity gap diffractive DIS in a wide region
of parameter space.

We have extended the original calculation to include
large pseudo-rapidity gap diffractive production of three
or more partons, which we term “multi-jet” production,
due, e.g., to the diagrams of Fig. 2. Here we consider
the virtuality of the exchanged parton coupling to the
pomeron. In the boson-gluon fusion case, for example, we
are concerned with the virtuality of the exchanged gluon.
We find that the constraint on the virtuality of this par-
ton is slightly weaker than in the dijet case, but still find
that the large pseudo-rapidity gap selection cuts rule out
resolved-coupling contributions from these diagrams for
most of the data points corresponding to Table 2. The de-
tails of this calculation are given in Appendix A.2.

4 Implications and models
of the pseudo-rapidity gap dependence

The result of this analysis has been to show that, for a
subclass of the deep-inelastic diffractive events, the rele-
vant colour-singlet exchange process, pomeron exchange,

2 We note that the experimental cuts are made at the hadron
level, and that our calculations are at parton level. The cor-
responding estimate of ηmax at the parton level uses a conser-
vative estimate of the hadronization radius [3], namely, it as-
sumes that the hadronization radius spans approximately half
a unit in pseudo-rapidity. We have tested the robustness of our
calculations by also considering the extreme cases where the
hadronizing parton is at either edge of the resulting jet, finding
that a large lower bound, −k2

min ∼> 1GeV2, on the exchanged
quark virtuality remains



J. Ellis et al.: Probing the structure of the pomeron 447

must involve a direct coupling to off-shell partons involved
in the hard-scattering process. This is a significant re-
sult because, at first sight, such a component is not the
usual parton contribution to inclusive deep-inelastic scat-
tering processes that is often used to interpret the data
in terms of a “pomeron” structure function. In particular,
our results show that the graphs involving t-channel colour
non-singlet exchange in the hard-scattering sub-process
should not be included in describing the deep-inelastic
exclusive processes involving strong pseudo-rapidity cuts.
However, pseudo-rapidity cut events exhibit scaling and
form a significant part of the inclusive deep-inelastic scat-
tering events which are governed by the operator prod-
uct expansion (OPE). The latter ascribes the dominant
scaling contribution in deep-inelastic inclusive scattering
to just the colour exchange graphs which we argue must
be absent from the exclusive strong pseudo-rapidity cut
events. These leading-twist graphs have also been shown
directly to dominate exclusive diffractive processes, using
an expansion in non-local operators [13,14]. However, it is
not clear that this analysis applies to the more exclusive
pseudo-rapidity gap events of interest here.

There are two possibilities for reconciling our results
on the importance of colour-singlet exchange with this ex-
pected need for colour-exchange processes. The first arises
because the events being studied at HERA are at ex-
tremely small xBjorken, in a region where the OPE, which
is reliable when there is only one large variable, may break
down because Q2 and ν, although both large, are not of
the same order. We know that such a breakdown must
occur in the transition to forward scattering, which is
governed by t = 0 non-perturbative Regge-exchange pro-
cesses. If naive perturbation theory does fail, one is forced
to adopt a more phenomenological approach to the diffrac-
tive scattering of the struck quarks off the proton target.
Donnachie and Landshoff have suggested that diffractive
quark-proton scattering occurs through a direct coupling
of a colourless pomeron to the quark [9]. In analogy with
their successful analysis of hadron-hadron diffractive scat-
tering [1], they assume that this process proceeds via vec-
tor exchange with a form factor at the quark vertex to de-
scribe the dependence on the quark virtuality. The latter
is required to avoid power-law violations of the observed
scaling in deep-inelastic diffractive processes. In a similar
spirit, Vermaseren et al. (VBLY) [10] consider a scalar ef-
fective exchange interaction to describe the same process.

A second possible way to resolve the apparent dis-
crepancy between the observation of scaling in the large
pseudo-rapidity gap events and the OPE does not involve
abandoning the OPE for the values of xBjorken probed at
HERA. This possibility is motivated by the observation
that the xBjorken and Q2 dependence of inclusive deep-
inelastic scattering is well fitted by a continuation of the
usual DGLAP analysis to small xBjorken. In this case, the
large pseudo-rapidity gap events, while not being directly
described by the OPE analysis, because of their exclusive
nature, must obey the constraints on the inclusive cross
section of which they are a part. In order to make connec-
tion with the usual QCD description of deep-inelastic scat-

(1 � �)PIP �PIP

PIP

Fig. 3. Two-gluon contribution to the pomeron form factor

tering, it is necessary to couple the pomeron to near-mass-
shell quarks and/or gluons. Given the discussion above,
this must be via colour-singlet exchange due to a dia-
gram such as that in Fig. 3. How does such a diagram
fit into the OPE framework? At first sight, it would seem
that Fig. 3 corresponds to a higher-twist operator con-
tribution, because we cannot form a twist-two operator
from the four physical gluons involved in the square of
the scattering amplitude. This would mean that the asso-
ciated structure function should be suppressed relative to
the twist-two contribution by a factor O (Λ2/Q2

)
, where Λ

is a hadronic scale, i.e., the associated structure function
should not scale, in disagreement with the measured struc-
ture function. However, the identification of the diagrams
of Fig. 3 with higher-twist operators is not correct if the
right-hand gluon leaves the quark near its mass shell. In
this case, the hard-scattering process is that involving the
left-hand gluon only, and the diagram should be identi-
fied with the leading twist-two gluon operator. The sub-
sequent soft-scattering process involving the right-hand
gluon should properly be included in the soft dressing that
is implicitly present in any description of deep-inelastic
scattering in order to obtain a final state involving colour-
less hadrons. The soft parton emission processes discussed
in Appendix A.2 also contribute to this dressing. In the
fully inclusive scattering case the sum of such dressing
forms a complete sum and thus drops out of the calcula-
tion of the total cross section.

In what follows we shall discuss both the above pos-
sibilities, and try to determine which best describes the
pseudo-rapidity gap events. As mentioned above, the di-
rect coupling has been variously described in terms of a
vector-like coupling to quarks [9,7], and also in terms of a
model in which the pomeron has a point-like scalar cou-
pling to quarks and gluons3 [10]. The vector-like exchange
model is motivated by the success of the Donnachie-Land-
shoff (D-L) description of diffractive proton-proton and
proton-antiproton scattering in terms of vector exchange

3 Here we consider only the dijet component of the VBLY
model
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Fig. 4. Two-gluon exchange graphs
used to model pomeron exchange

with Wu-Yang couplings to the nucleon. They suggested
that Pomeron exchange should be treated as a C-even
vector-exchange process with γµ couplings to the incident
proton and the quark involved in the deep-inelastic pro-
cess as shown in Fig. 14. The expected Regge behaviour at
large centre-of-mass energies is put in by hand. In order
to generate a cross section consistent with the observed
scaling, they introduced a form factor at the quark vertex
of the form

f(k2) =
Λ2

Λ2 − k2 , (10)

where k is the four momentum of the struck quark (0 ≤
|k2| ≤ Q2/β) in Fig. 1 and Λ = O(ΛQCD). This choice
of form factor allows the pomeron to couple to off-shell
partons, but results in the dominant contribution to the
diffractive cross section coming from small k2. This means
that the model is very sensitive to strong pseudo-rapidity
cuts, and it was argued in [7] that the cross section falls
off too rapidly with decreasing pseudo-rapidity to be able
to explain the number of events seen in the large pseudo-
rapidity gap sample.

A variant of the model was considered in [7] (E-R),
where a harder form factor was chosen:

f(k2) =

√
Λ2

Λ2 − k2 , (11)

which leads to a prediction of additional logarithmic scal-
ing violations. The motivation for such a model comes
from the observation [2] that diffractive events are rela-
tively insensitive to the pseudo-rapidity gap, and hence
should not be too sensitive to the exchanged quark vir-
tuality, k2, as k2

min can be related to pseudo-rapidity [7].
Such a choice is consistent with measurements [8] of the
diffractive structure function F

D(3)
2 . Since this form fac-

tor falls off more slowly with k2 than that of (10), the
contribution from higher virtuality states is enhanced. In
fact, using (11), one finds a uniform contribution from all
virtualities up to the maximum [7].

The third direct coupling model assumes effective
scalar exchange as treated in [10]. In this case, no form
factor is needed, as the cross section scales without it.

An alternative and possibly complementary approach
to modelling the direct (colour-singlet) coupling of the
pomeron to the quarks is via the colour singlet-component
of multi-gluon exchange diagrams, in which the gluons

4 Note that the soft parton (gluon) emission processes dis-
cussed in AppendixA.2 do not fit into this description, because
they correspond to the scattering of a C−odd gluon (leading-
twist) on the struck quark

couple to the quarks involved in the hard-scattering pro-
cess. The simplest graphs are the two-gluon exchange pro-
cesses shown in Fig. 4 [15]. Clearly, this can only be an
approximation to pomeron exchange, but it does capture
some of the important features, and does contribute to the
large pseudo-rapidity gap events. As is clear from our dis-
cussion above, the direct coupling models à la Donnachie-
Landshoff contain a component of two-gluon exchange,
but the latter has the advantage of allowing for a non-
local coupling of the pomeron to both the struck quarks.

Of course these two interpretations need not be dis-
tinct, in the sense that the two-gluon contribution of Fig. 3
to the pomeron may be interpreted as a direct coupling
of the pomeron to quarks with a form factor. In this case,
the first two diagrams of Fig. 4 may be interpreted as
part of the direct contribution. However, gauge invariance
then requires that the remaining two diagrams of Fig. 4
be included, and these cannot be interpreted as a direct
coupling of the pomeron to a single quark. However, due
to the extra hard propagator involved in these terms, their
contribution occurs only at higher twist. A consequence of
this is that, beyond leading twist, the direct coupling mod-
els at best apply in a specific gauge, namely the gauge in
which the contributions of the diagrams of the type cor-
responding to the third and fourth diagrams of Fig. 4 are
minimized [11,17].

On the other hand, as we have also discussed, a compo-
nent of these multi-gluon exchange graphs should be iden-
tified with the leading-twist exchange. In the two-gluon
case, the leading-twist contribution corresponds to the
imaginary part of the amplitude which is indeed thought
to dominate diffractive scattering. In this part, the inter-
mediate quark coupling to the right-hand gluon is on shell,
and this is the component that we argued has a leading-
twist component. For the case of more than two gluons,
the projection onto the imaginary part is not sufficient to
avoid large quark propagators appearing. The phase space
associated with the relevant leading-twist configuration is
quite small for the large pseudo-rapidity gap events. To
see this, note that the pseudo-rapidity cut requires 2k.p >
−k2

min. Thus, to keep the quark propagators to the right of
the left-hand gluon close to mass shell, the fraction, 1-α,
of the pomeron momentum carried by the left-hand gluon
must be large, α ≤ Λ2/2k ·p ≤ Λ2/(−k2

min), corresponding
to a small phase space factor for such effects. This suggests
that either the two-gluon graph dominates, in which case
this constraint follows for the dominant imaginary part,
or there are a large number of such soft gluons associated
with the colour field of the proton remnant, so that the
sum over the “dressing” gluons compensates for the small
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phase space available. The latter picture has been pro-
posed by Buchmüller and Hebecker [18]. In this picture,
the primary hard scattering is due to the usual one-gluon
exchange, followed by random soft dressing in the field
of the proton remnant. As discussed above, this picture is
entirely consistent with the OPE or related [13,14] expan-
sions, and corresponds to keeping the leading-twist con-
tribution. This leading-twist interpretation of the pseudo-
rapidity gap events does not fit easily with the “particle”
interpretation of the Pomeron as a bound state with a sig-
nificant two-gluon component, because there is no obvious
way that the soft gluon dressing should build up a pole in
the t channel corresponding to the Pomeron singularity.

Note again that the fact that the pseudo-rapidity cut
requires colour-singlet exchange in the t-channel, com-
bined with the leading-twist constraint, requires that a
single gluon carries the bulk of the pomeron momentum.
This is true also of the soft-parton emission processes
which are discussed in Appendix A.2, and which are in-
cluded in the leading-twist contribution. The requirement
that a single parton carries most of the Pomeron momen-
tum is a purely kinematical constraint, and does not imply
that the same is true for the full partonic structure of the
Pomeron. However, in the leading-twist model, the fact
that the event rate requiring a stringent pseudo-rapidity
gap is comparable to the event rate without this cut does
suggest such a component is a significant part of the par-
tonic structure.

5 Pseudo-rapidity gap tests

We turn now to the comparison of these models with ex-
periment. The data we use are the large pseudo-rapidity
cut events described above, and Table 2 shows the param-
eters of the data set chosen, where the experimental cut
on pseudo-rapidity is ηmax = 1.8. From this Table, we can
see that the virtuality constraints rule out any contribu-
tion from dijet production. Appendix A.2 shows that the
multi-jet contribution has a lower limit on the virtuality
of the exchanged parton coupled to the pomeron, so, as we
can see from Table 2, most of the data sample corresponds
to regions where multi-jet events are also not selected.

It is clearly of interest to try to use these data to dis-
criminate between the various models suggested to de-
scribe deep-inelastic diffractive scattering. Here we take
a step in this direction by computing the dependence of
the deep-inelastic diffractive scattering cross section and
diffractive and pomeron structure functions on the pseudo-
rapidity cut for several of the models discussed above.

We first compute this dependence for the case in which
pomeron exchange is modelled by a vector C = +1 ex-
change, with a form factor at the quark vertex as discussed
above. We also consider the VBLY model, in which the
pomeron is assumed to have a scalar coupling to quarks.
The second class of model we consider is the leading-
twist Buchmüller-Hebecker type model, in which a sin-
gle gluon is responsible for the hard scattering. In this
case, the pseudo-rapidity gap dependence is due to single-
gluon exchange as in exclusive deep-inelastic scattering.

The second (and possibly further) gluon is then simply
there to provide soft dressing to produce colour-singlet fi-
nal states, and is assumed not to affect the pseudo-rapidity
cut dependence. Finally, we consider the case in which the
pomeron is replaced by two gluons, following the calcula-
tion of Diehl [11]. We will also comment at the end on the
related two-gluon model of [19].

We start with the direct-coupling models with vector-
like coupling. In Fig. 5 we show the fit to the diffractive
structure function of (1) for the pseudo-rapidity cut data
of [12]. The solid points are experimental data, the solid
line represents the E-R model, and the dotted line corre-
sponds to the D-L model. The overall normalization is the
sole parameter of each model, and is determined by a fit
to all the data points. The plots shown here correspond
to a pomeron intercept of αIP (0) = 1.08, corresponding to
the soft pomeron intercept of hadron-hadron elastic and
diffractive scattering [1]. However, as is discussed further
below, we have also obtained similar fits for other choices
of the pomeron intercept. From Fig. 5 we can see that the
E-R model provides a rather good fit, showing that the
harder form factor is an improvement over that used in
the D-L model. This point is made in a more quantitative
way in Table 3, where the χ2 for the various fits are given.

Fig. 6a shows the pomeron structure function, F IP
2 ,

of (2), up to the normalization determined above, as a
function of Q2 at fixed β, and Fig. 6b shows the β depen-
dence of F IP

2 at fixed Q2. Naively, one can determine the
approximate behaviour of the diffractive structure func-
tion as a function of β, at fixed Q2 and xIP , by looking at
the behaviour5 of F

D(3)
2 at small virtuality, k2. Then, for

example, in the case of the D-L model one would expect
to find that

F IP
2 ∼ β(1 − β). (12)

Further, one can show that in the case of large virtuality
constraints (k2

min > 1 GeV2), the form of F IP
2 is modified

to
F IP

2 ∼ β(1 − β)2. (13)

However, there is an additional contribution to the β de-
pendence in experiments with a large virtuality constraint,
arising from the lower limit of the k2 phase space integral.
We can see from Table 2 that, at fixed Q2 and xIP , k2

min de-
creases approximately linearly with increasing β. Hence,
for the D-L model, in which the form factor introduces
an approximately 1/k4 dependence into the cross section,
we would expect to see a rather strong suppression in the
“pomeron structure function” at small β. This is clearly
observed in the dotted curve of Fig. 6b.

The harder form factor model of E-R has an approxi-
mately 1/k2 dependence introduced by the form factor, so
such a strong suppression is not expected. Furthermore,
this choice of form factor leads to a ln(Q2/µ2) behaviour
in the diffractive cross section, which reflects contributions
from the whole range of k2, and hence the small k2 approx-
imation is expected to be relatively poor. In Fig. 6b we see

5 In the case that the diffractive structure function factorizes
to give a pomeron structure function, this is the dependence
of F IP

2 at fixed Q2
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Fig. 5. The E-R and D-L form-factor models are fitted to data for F
D(3)
2 with a virtuality cut. The data sample corresponds

to a pseudo-rapidity cut at hadron level of ηmax = 1.8, the pomeron intercept is here assumed to be αIP (0) = 1.08, and in the
form factors of (10) (D-L) and (11) (E-R) the parameter Λ is chosen to be 0.2GeV. The points correspond to data from [12] for
which −k2

min > 1GeV2, and the statistical and systematic errors have been added in quadrature. The solid line is the prediction
from the E-R model with the overall normalization determined by a fit to the data points. The dashed line is the D-L model
with the same normalization procedure

that, even for data with a relatively large rapidity cut, the
E-R model predicts a rather flat β distribution of F IP

2 , in
better agreement with the experimental data. Further, as
discussed earlier, as a result of the large pseudo-rapidity
gap cuts, we expect a further xIP dependence from the
lower limit of the phase-space integral. This means that a
“pomeron structure function” defined by multiplying the
diffractive structure function by an appropriate power of
xIP will not be independent of xIP . Hence, for such data

we cannot define a “pomeron structure function”, F IP
2 . In

order to have a meaningful comparison with F IP
2 data,

therefore, it is necessary to consider the diffractive struc-
ture function at fixed xIP . In the fits shown in Figs. 6, 8
and 10, data are plotted for which xIP ≈ 0.0065. The
model curves are calculated at the corresponding xIP val-
ues, and, where there are no data in Q2 and β with ap-
propriate xIP , the theory points are calculated using the
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Fig. 6a,b. The E-R and D-L form factor models are fitted to the virtuality cut data [12] for the structure function F IP
2 , with

parameters as in Fig. 5. The solid line is the prediction from the E-R model as determined in Fig. 5, and the dashed line is the
D-L model

value xIP = 0.00649, which is the most common value of
xIP of the plotted data points.

For comparison, we show in Figs. 7 and 8 the equiv-
alent fits for the case of the colour-singlet part of single-
gluon exchange (solid line) and the pomeron-quark cou-
pling contribution to the scalar pomeron model (dotted
line).

In Figs. 9 and 10 we show the fits using the two-gluon
exchange model of Diehl [11]. The most striking feature
here is the failure of the model to describe the small-β
dependence of the pseudo-rapidity cut data. The reason
for this may be seen in the analytic form presented by
equation (30) of [11], which shows that, for large p2

⊥ min,
there is a β3 dependence, in disagreement with the rather
flat dependence found experimentally. Only if the p2

⊥ min

cut is removed does the two-gluon term generate an ap-
proximately linear β dependence.

We have also considered the diffractive scattering mod-
els for the case of a larger pomeron intercept, αIP (0) = 1.2,
which corresponds to the pomeron intercept favoured in
recent H1 and ZEUS analyses [8,20]. This choice of inter-
cept does not provide a significantly different fit, as can
be seen in Table 3. This indicates that the present data
are not sufficiently precise to determine the intercept ac-
curately. As may be seen from Table 3, the fits are also
reasonable for the choice αIP (0) = 1. This corresponds
to the use of the xIP dependence as given by the graphs
themselves, a procedure adopted in [16,13].
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Fig. 7. The single-gluon exchange and scalar-pomeron models are fitted to virtuality-cut data [12] for F
D(3)
2 , with parameters

as in Fig. 5. The solid line is the prediction from the single-gluon exchange model, and the dashed line is the scalar pomeron
model

6 Future experiments

As has been discussed previously [7] and was also discussed
above, H1 and ZEUS analyses in which only events with
very large pseudo-rapidity gaps were selected are not de-
scribed by the resolved-coupling picture as previously for-
mulated [4], as the cuts force the partons coupling to the
pomeron to have large virtualities. Thus these experiments
provide a very strong test of models of the colourless com-
ponent of the pomeron coupling to the virtual quark. Here
we wish to stress that these tests can be made more strin-
gent by relatively straightforward measurements.

For a given pseudo-rapidity cut, one can calculate the
region of parameter space in Q2, β and xIP in which one
would expect to see strong virtuality constraints due to the
cut, using the results presented in Appendices A.1 and A.2.
There are a number of ways one can use this information to
test these ideas. The dependence of the exchanged parton
virtuality on pseudo-rapidity cuts and kinematic param-
eters could best be studied by examining two samples of
data. The first should be chosen with a relatively strong
pseudo-rapidity cut, in a region where the cuts force |k2| ∼>
a few GeV2. The second set should be chosen to differ from
the first only in the strength of the pseudo-rapidity cut.
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Table 3. Results of the fits of various colour-singlet exchange models to
the F

D(3)
2 structure function data from [12]

χ2/dof
αIP (0) = 1.08 αIP (0) = 1.2 αIP (0) = 1

E-R: f(k2) =

√
Λ2

Λ2−k2 37/41 54/41 30/41

D-L: f(k2) =
Λ2

Λ2−k2 102/41 97/41 179/41

Single gluon: 64/41 57/41 69/41

Two gluon (Diehl): 137/41 136/41 137/41

Scalar (VBLY): 48/41 61/41 40/41
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Fig. 9. The two-gluon exchange model is fitted to virtuality cut data [12] for F
D(3)
2 , with parameters as in Fig. 5

For a stronger cut, one would expect to see a relative re-
duction in the extracted diffractive structure function due
to there being less phase space available for the scattering
interaction. This is a model-independent effect, and does
not require knowledge of the overall normalization.

The size of the reduction is a direct indication of the
magnitude of the colourless component of the pomeron
coupling to the virtual quark system. The magnitude of
this reduction is predicted differently by the various mod-
els of diffractive scattering, and hence offers a sensitive
way to discriminate between them. At present, we know
of only one such study with data chosen with two differ-
ent pseudo-rapidity cuts [8], but the virtuality constraints
used are insufficient to provide a significant reduction in
phase space.

Finally, as noted above, the Q2, β and xIP dependence
of the pseudo-rapidity cut provides a further sensitive test
of the models. At present, the data available for such a
study [12] have rather poor statistics, but can already dis-
criminate between several of the models presented here.
More accurate data would be extremely useful in refining
the selection between models.

7 Summary and conclusions

In this paper we have re-examined the information that
can be obtained from the pseudo-rapidity gap dependence
of diffractive deep-inelastic scattering. The main conclu-
sion, up to graphs involving soft parton emission, is that a
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Fig. 10a,b. The two-gluon exchange model is fitted to virtuality cut data [12] for F IP
2 , with parameters as in Fig. 5

strong pseudo-rapidity cut requires that the resolved par-
tonic component of the Pomeron must be colourless, i.e.,
the coupling of the Pomeron for partonic states of high vir-
tuality is via colour-singlet states. This may be achieved
either by postulating a direct coupling with an associated
form factor or by modelling it via multi-gluon and multi-
quark states. Imposing the pseudo-rapidity cut provides
a way to measure this component in the coupling of the
Pomeron.

Analysis of the available data with strong pseudo-ra-
pidity cuts shows that the cross section is relatively insen-
sitive to the cut, implying that the direct or multi-parton
component of the pomeron coupling makes a significant
contribution. The fit assuming a direct C = +1 vector-
like coupling to quarks is sensitive to the form factor de-
scribing the dependence on the virtuality of the quark. An
excellent fit is obtained using the hard E-R form factor,

whereas the softer D-L form is not consistent with the
data. A good fit is also obtained for the scalar pomeron
case. A marginally acceptable fit is also obtained for the
case that diffractive scattering is described by the leading-
twist single-gluon component with colour dressing due to
soft gluons. This contribution necessarily has the pomeron
momentum carried by the single gluon. If this is indeed the
source of the large pseudo-rapidity gap events, the fact
that these events are a sizeable part of the full diffrac-
tive deep-inelastic events implies that a significant par-
tonic component of the Pomeron has all of its momentum
carried by a single gluon.

This is very interesting in terms of the recent H1 fit of
diffractive structure function data [8] using the diagrams
of Figs. 1 and 2, which favoured a strongly peaked gluon
component with one very hard gluon. However, the H1
calculation considered only the resolved-coupling compo-
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nent of the pomeron, which we argue here is unable to
describe data for which the pseudo-rapidity cut imposes
strong virtuality constraints. Further, it was suggested in
[7] that the contribution from Fig. 3 might have signif-
icant scaling violations which, if included in the H1 fit,
might enable a less extreme pomeron structure to be fit-
ted to the observed diffractive structure function scaling
violations. We also note that there are alternative fits to
the H1 data in a two-gluon exchange model [19].

Perhaps the most significant feature of the compari-
son of the models with data is the failure of the two-gluon
model of Diehl to fit the observed β dependence. The rea-
son for this is that, with a large pseudo-rapidity gap cut,
there is a strong bound on the lowest p2

⊥ available. Im-
posing this, the model predicts a β3 dependence for the
structure function, which is in strong disagreement with
experiment. One may ask whether this feature persists in
all two-gluon exchange models, as Diehl assumes a partic-
ular form for the “non-perturbative” gluon propagators.
In the case of the more phenomenological model of [19] it
is easy to check that the β3 behaviour should also apply to
the qq̄ longitudinal and transverse components. The only
remaining term in the model which might give a better
β dependence for the case of a strong p2

⊥ lower bound is
the qq̄g component. Unfortunately we do not know this
dependence at present.

Given the sensitivity of various models of diffractive
processes in deep-inelastic scattering to the pseudo-rapid-
ity cut, it would be of great interest to obtain improved
statistics for such processes. This may allow us to distin-
guish between the direct coupling and the leading-twist
models.
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helpful discussions and to gratefully acknowledge funding by a
Commonwealth Scholarship.

Appendix A

A.1 Constraints on parton virtualities
in dijet production

Here we consider the effect of pseudo-rapidity cuts on the
virtuality of the exchanged quark in Fig. 1. This calcula-
tion was originally reported in [7], which also includes an
analysis of the data shown in Table 1. In this Appendix
we present the derivation of this result. The outline is
as follows: we start with pseudo-rapidity defined in terms
of the polar angle in the laboratory (LAB) frame, and
then boost to the photon-pomeron centre-of-mass (CMS)
frame, which is also the CMS frame of the hadronic jets in
the diffractively-produced system X. From this one can re-
late pseudo-rapidity to struck quark virtuality in terms of
the kinematic invariants, and therefore determine the min-
imum virtualities, k2

min, implied by the pseudo-rapidity
cuts, ηmax, for each set of parameters, β, Q2, and xIP .

We consider diffractive e − P deep-inelastic scattering
via dijet production in the HERA LAB frame:

pe
p0

e

pA

gX
pB

k

P P 0

Fig. 11. Momentum assignments for dijet production

e(pe) + P (P ) → e(p′
e) + X(Xlab) + P (P ′), (A.1)

where the momenta of the particles are shown in brackets,
and M2

X is the invariant mass squared of the diffractive
system X composed of the two outgoing jets, as shown in
Fig. 11. In the LAB frame,

pe = (Ee, 0. 0, −Ee) Ee = 27.5 GeV
P = (EP , 0. 0, EP ) EP = 820 GeV
p′

e = (E′
e, E′

e sin θ′
lab, 0, E′

e cos θ′
lab)

q = (Ee − E′
e, −E′

e sin θ′
lab, 0, −Ee − E′

e cos θ′
lab), (A.2)

and we parameterize the lower quark momentum generally
by

pB = (l, l sin θlab cos φlab, l sin θlab sinφlab, l cos θlab).
(A.3)

Here we have assumed that the pomeron is emitted in the
proton direction and carries a fraction xIP of the proton
initial momentum.

The following relations are useful:
Q2 = −q2 = −(pe − p′

e)
2 = 2pe · p′

e = 2EeE
′
e(1 + cos θ′

lab)
(A.4)

and

W 2 = (P + q)2 ⇒ W 2 + Q2 = 2P · q

= 2EP (Ee − E′
e + Ee + E′

e cos θ′
lab)

= 2EP [2Ee − E′
e(1 − cos θ′

lab)]. (A.5)

Hence

E′
e(1 + cos θ′

lab) =
Q2

2Ee
(A.6)

E′
e(1 − cos θ′

lab) = 2Ee − Q2 + W 2

2EP
. (A.7)

Therefore, adding (A.6) and (A.7), we get

2E′
e = 2Ee +

Q2

2Ee
− Q2

2EP βxIP
, (A.8)

and, subtracting,

2E′
e cos θ′

lab = −2Ee +
Q2

2Ee
+

Q2

2EP βxIP
. (A.9)
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We can therefore write the momentum of the diffractive
system as

Xlab = (xIP EP + Ee − E′
e, −E′

e sin θ′
lab, 0,

xIP EP − Ee − E′
e cos θ′

lab),

=
(

xIP EP +
Q2

2

[
1

2EP βxIP
− 1

2Ee

]
,

−
[
Q2
(

1 − Q2

2EP EeβxIP

)] 1
2

, 0

xIP EP − Q2

2

[
1

2EP βxIP
+

1
2Ee

])
. (A.10)

In the CMS frame, the momentum of the diffractive sys-
tem is

Xcms = (MX , 0, 0, 0). (A.11)

We now carry out two Lorentz boosts to get from the
LAB frame to the jet-jet CMS frame, seeking to remove
the spatial components of Xlab. The first boost we take
along the z axis, with boost parameter β1. The required
boost satisfies Xz

lab − β1X
0
lab = 0, giving

β1 =
−
[

Q2

2

(
1

2EP βxIP
+ 1

2Ee

)
− xIP EP

]
Q2

2

(
1

2EP βxIP
− 1

2Ee

)
+ xIP EP

. (A.12)

After this first boost, we have

X0
lab → X ′ 0

=
1√

1 − β2
1

[
xIP EP +

Q2

2

(
1

2EP βxIP
− 1

2Ee

)
−

β1

{
xIP EP − Q2

2

(
1

2EP βxIP
+

1
2Ee

)}
]

=

√
1 − β2

1

β1

[
xIP EP − Q2

2

(
1

2EP βxIP
+

1
2Ee

)]
,

X ′ x = XX
lab. (A.13)

We now boost along the x direction, which requires a boost
parameter β2 satisfying

X ′ x − β2X
′ 0 = 0, (A.14)

giving

β2 =
β1√

1 − β2
1

[
Q2
(
1 − Q2

4EeEP βxIP

)] 1
2

Q2

2

(
1

2EP βxIP
+ 1

2Ee

)
− xIP EP

. (A.15)

These two boosts take us to the jet-jet CMS frame.
Now we consider the jet produced by the lower parton

line in the LAB frame. Consider the effect of the previous
two boosts on the 0th component of pB :

β1 : pB
0 → p′ 0

B =
l√

1 − β2
1

(1 − β1 cos θlab),

β2 : p′ 0
B → p0

B cms =
l√

1 − β2
2

[
(1 − β1 cos θlab)√

1 − β2
1

−

β2 sin θlab cos φlab ] . (A.16)

Remembering that
Plab = (EP , 0, 0, EP ), (A.17)

we see that the effect of the boosts on the 0th component
of the proton initial momentum is

β1 : P 0 → P ′ 0 =
(1 − β1)√

1 − β2
1

EP =

√
1 − β1

1 + β1
EP ,

β2 : P ′ 0 → P 0
cms =

√
1 − β1

1 + β1

EP√
1 − β2

2

. (A.18)

For general on shell 4-vectors p and q, we have
p · q = p0 q0 (1 − cos θ), (A.19)

where θ is the angle between p and q. So we have

P · pB = P 0 pB
0 (1 − cos θlab)

= P 0
cms p0

B cms (1 − cos θcms), (A.20)

where θcms is the angle of the quark relative to the forward
proton direction in the CMS frame, and θlab is the angle
of the quark relative to the forward proton direction in
the LAB frame. Hence

(1 − cos θcms)

=
(1 + β1)(1 − β2

2) (1 − cos θlab)
1 − β1 cos θlab −

√
1 − β2

1 β2 sin θlab cos φlab
. (A.21)

Thence the constraint follows: a cut on pseudo-rapidity,
ηmax, is equivalent to a cut on the lab angle, θmin

lab , where

η = − ln tan
θlab

2
⇒ cos θmin

lab =
1 − e−2ηmax

1 + e−2ηmax
. (A.22)

Thus

(1 − cos θmin
cms) =

(1 + β1)(1 − β2
2) 2e−2ηmax

1+e−2ηmax

1 − β1
1−e−2ηmax

1+e−2ηmax −
√

1 − β2
1β2

2e−ηmax

1+e−2ηmax cos φlab
, (A.23)

from which it follows from (9) that a cut in pseudo-rapidity,
ηmax, corresponds to a minimum virtuality, k2

min, of the
exchanged quark:

−k2
min =

Q2

2β

(1 + β1)(1 − β2
2) 2e−2ηmax

1+e−2ηmax

1 − β1
1−e−2ηmax

1+e−2ηmax −
√

1 − β2
1β2

2e−ηmax

1+e−2ηmax cos φlab
.

(A.24)

Since we do not know the azimuthal angle φlab, we choose
φlab to minimize |k2

min|, and still find that for a large range
of parameter space k2

min is constrained to be much larger
than 1 GeV2, as seen in Tables 1 and 2.

This calculation demonstrates clearly that dijet pro-
duction cannot contribute to large pseudo-rapidity gap
diffractive DIS for a wide range of the parameters β, Q2

and xIP .
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Fig. 12. Momentum assignments for multi-jet production

A.2 Constraints on parton virtualities
for production of three or more jets

For production of three or more jets, e.g., the processes of
Fig. 2, the situation is slightly more complicated. How-
ever, here one also finds strong virtuality constraints. It
is easiest to consider multi-jet production diffractive pro-
cesses in the form
e(pe)+P (P ) → e(p′

e)+X1(pA)+X2(pB)+P (P ′), (A.25)

where X = X1 + X2 is the diffractive system. The system
X2 is the hadronic jet produced by the final-state parton
coupled to the pomeron in a diagram such as Fig. 2, and
has squared mass M2

X2 ∼< 1 GeV2. The sum over the jets
formed from the other final-state partons in the process
is X1, and has squared mass M2 < M2

X . In the example
of three-jet production via boson-gluon fusion shown in
Fig. 2b, X1 corresponds to the two upper final-state quark
jets, whilst X2 represents the on-shell emitted gluon. In
this diagram, we are looking at constraints on the squared
four-momentum of the exchanged gluon.

In the CMS frame, we parameterize the jet momenta
by

pA = γ
M2

X

2
(
2 − γ

γ
, − sin θcms, 0, − cos θcms)

pB = γ
M2

X

2
(1, sin θcms, 0, cos θcms), (A.26)

where the mass squared of system X1 is (1 − γ)M2
X , and

0 < γ ≤ 1. The case γ = 1 corresponds to dijet produc-
tion. The pomeron momentum in this frame is

PIP = (E, 0, 0, E), (A.27)

where

E =
Q2 + M2

X

2MX
. (A.28)

The momentum of the exchanged parton is given by
k = pA − q = PIP − pB (A.29)

and therefore the virtuality of the exchanged parton is

k2 = −γ
Q2 + M2

X

2
(1 − cos θcms). (A.30)

�1

�1 � �2

Fig. 13. Pseudo-rapidity definition at the parton and hadron
levels

We see that the constraint from the ηmax cuts, derived in
Appendix A.1, can in theory be evaded by having γ small.

Let us first consider the case θcms > 90◦, in which case
the condition that the virtuality of the parton be low (say
≤ 1 GeV2) requires

γ ≤ 1 GeV2 · 2
Q2 + M2

X

=
2

k2
max (GeV2)

. (A.31)

From Table 2, we see that for the case that the pseudo-
rapidity cut imposes a significant constraint on k2

min, k2
min >

6 GeV2, say, γ ≤ 1/33. This corresponds effectively to
a two-jet configuration, because the soft parton carrying
less than 1/33 of the Pomeron momentum will not be ob-
served as a jet. The other parton is constrained by the
pseudo-rapidity cut to carry essentially all of the Pomeron
momentum. As discussed in the text, this contribution
is included in the model corresponding to leading twist,
but not in the models of direct coupling. The non-soft
contributions which are genuinely multi-jet processes may
be shown to require high virtuality similar to the two-jet
bound. To see this, we note that, from (A.30), the pseudo-
rapidity cuts give us

−k2
γ<1 ≥ −k2

min = γ
Q2 + M2

X

2
(1 − cos θmin

cms)

= −γ k2
γ=1, (A.32)

where k2
γ=1 is the minimum virtuality of the exchanged

quark in the dijet production diagram of Fig. 1 allowed
by the experimental cuts.

The opening angle of a soft jet will clearly be much
greater than for a harder jet. We quantify this statement
below. The angles discussed here are shown in Fig. 13. In
the HERA LAB frame, θ1 is the angle between the final-
state parton which hadronizes to produce the observed jet,
and θ2 is the opening angle of the hadronic jet. Therefore
θ1 − θ2 is the angle between the edge of the hadronic jet
and the proton direction, in terms of which the pseudo-
rapidity gap is defined.
To estimate the opening angle of a soft jet, we assume
that a jet produced by a parton of energy Ej has a cone
radius of 0.5 to 1 unit of pseudo-rapidity, and an opening
angle of θ2. Boosting to a frame in which the parton has
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energy γ Ej , we can find the opening angle, θ′
2, of the cor-

responding jet in terms of θ2. This is the relation between
angles that we shall assume for a soft jet in the HERA
LAB frame. Starting with a massless parton with energy
Ej , we then boost to a frame in which it has energy γ Ej :

(Ej , 0, 0, Ej) → γ (Ej , 0, 0, Ej) (A.33)

If we denote the boost parameters by γ∗ and β∗, where
γ∗ = 1/

√
1 − β∗2, then we have

γ Ej → γ∗(Ej − β∗ Ej) ⇒ γ = γ∗(1 − β∗). (A.34)

The corresponding transformation of angles is

tan θ′
2 =

1
γ∗

sin θ2

cos θ2 − β∗

=
1
γ∗

sin θ2/ cos θ2

1 − β∗/ cos θ2

≥ 1
γ∗

tan θ2

1 − β∗

=
1
γ

tan θ2 (A.35)

Further, from (A.35), we have

tan θ′
2 ≥ 1

γ
tan θ2 ≥ 1

γ
2 tan

θ2

2
(A.36)

i.e.,

tan
θ′
2

2
≥ 1

γ
tan

θ2

2
(1 − tan2 θ′

2

2
) (A.37)

To see what sort of bound we can put on (1 − tan2 θ′
2
2 ),

we assume that θ1 ≤ 90◦, i.e., the jet is produced in the
forward hemisphere.

The large pseudo-rapidity cut data from [12] was taken
with an experimental cut on pseudo-rapidity of ηmax =
1.8, which corresponds to a minimum angle in the HERA
LAB frame with no hadronic activity of θlab

min ≈ 18◦. There-
fore

θ′
2 ≤ θ1 − 18◦ ⇒ 1 − tan2 θ′

2

2
≥ 1 − tan2 36◦ ≈ 0.47.

(A.38)
Thus

tan
θ′
2

2
≥ 0.47

γ
tan

θ2

2
. (A.39)

Finally, pseudo-rapidity cuts are defined at the experi-
mental level by seeking events with an angle θ1 −θ2 which
satisfies the pseudo-rapidity cut ηmax:

ηexpt
max ≥ − ln tan

(
θ1 − θ2

2

)

≥ − ln(tan
θ1

2
− tan

θ2

2
)

= − ln tan
θ1

2
− ln

(
1 − tan θ2

2

tan θ1
2

)

⇒ − ln tan
θ1

2
≤ ηexpt

max + ln

(
1 − tan θ2

2

tan θ1
2

)
. (A.40)

At the theoretical quark-parton level, we deal with the
angle θ1, and assume a cone radius of 0.5 to 1 unit of
pseudo-rapidity. Therefore

− ln tan
θ1

2
≤ ηth

max ≈ ηexpt
max − (

1
2

→ 1), (A.41)

giving

tan
θ2

2
= (0.39

0.63) tan
θ1

2
, (A.42)

where the factor 0.39 is for the case where one assumes a
cone radius of 1

2 , and the lower number is for unit radius.

Putting this all together, we can determine the bound
on multi-jet production in terms of the dijet limit calcu-
lated in Appendix A.1. Using (A.21), we can write

(1 − cos θcms) = f (1 − cos θlab), (A.43)

where f is a complicated function of the LAB angles and
boost parameters. We therefore have:

k2
γ<1 = γ

Q2 + M2
X

2
(1 − cos θ1

cms)

= γ
Q2 + M2

X

2
f (1 − cos θ1

lab)

= γ
Q2 + M2

X

2
f tan

θ1
lab

2
sin θ1

lab

≥ γ
Q2 + M2

X

2
f tan

θ′
2
lab

2
sin θ1

lab

≥ 0.47
Q2 + M2

X

2
f tan

θ2
lab

2
sin θ1

lab

= 0.47
Q2 + M2

X

2
f (0.39

0.63) tan
θ1

lab

2
sin θ1

lab

≈ (0.2
0.3)

Q2 + M2
X

2
f tan

θ1
lab

2
sin θ1

lab

= (0.2
0.3)

Q2 + M2
X

2
f (1 − cos θ1

lab)

= (0.2
0.3)

Q2 + M2
X

2
(1 − cos θ1

cms) (A.44)

i.e.
k2

γ<1 ∼> (0.2
0.3)k

2
γ=1 (A.45)

Thus, considering this result along with the dijet virtual-
ity limits shown in Table 2, we see that for all jet produc-
tion, 0 < γ ≤ 1, for a large region of parameter space,
resolved jet production by diagrams such as those shown
in Figs. 1 and 2 does not contribute to the large pseudo-
rapidity gap sample.

A.3 Multi-jet production – special case

We now consider a scenario which is not covered by ei-
ther of the cases described above. This is where the lower
parton coupled to the pomeron emits a gluon, or there
is some other QCD radiation, after it interacts with the
pomeron.
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k

p1

Fig. 14. Gluon bremsstrahlung in pomeron exchange

We consider the case of dijet production, noting that
the discussion for multi-jet production proceeds in an anal-
ogous way, with the modification that the lower quark cou-
pled to the pomeron emits final state radiation by single
gluon emission. This process is shown in Fig. 14.
In a resolved-coupling picture, the quark labelled p1 should
be close to mass shell. In this case, the quark momen-
tum at the lower vertex, p1, is shared between the two
final-state partons, which, following our argument in Ap-
pendix A.2, means that the jets from the hadronization
of these partons will be more spread than the jet from
one final-state parton carrying all the momentum. The
jets from the final-state partons are all constrained by the
pseudo-rapidity cuts to be separated from the pomeron
direction by a minimum angle θmin, and, since they will
spread more than a harder jet, the angle between the
hadronizing partons will be wider and hence the constraint
in this case is stronger than that for a single hard parton
at the lower vertex.

It should be clear from the discussion we present here
that the case for single-gluon bremsstrahlung is sufficient
to illustrate the case for emission of higher numbers of
partons from the lower line.
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